Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

How can I convert Rohde & Schwarz Oscillosope bin files to MATLAB compatible files?

I have bin files from Rohde & Schwarz RTO2044 Oscillosope and now I want to use these in MATLAB. Is there any MATLAB function/code available to directly get the waveform out of the .bin file? There are function available for Keysight Agilent Scope but I couldn't find for Rohde and Schwarz.

 

 NOTE:-


Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help , Finance Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.


After many trials, I discovered that the binary encoding from Rohde & Schwarz oscilloscope is a Floating-point with 32 bits (4 bytes). Matlab has a special word for this precision type: 'single' (see more details in Read data from binary file - MATLAB fread)
 
So, a simple fread function passing the precision argument 'single' will do the work. See example below.
 
 
fileName = 'D:\example.Wfm.bin';
fileID = fopen(fileName);
A = fread(fileID,'single');
Error using fread
Invalid file identifier. Use fopen to generate a valid file identifier.

Just be aware that your waveform will not start exactly at the first point in A,


SEE COMPLETE ANSWER CLICK THE LINK


Comments

  1. One of the critical strengths of The Herald Diary sites is their ability to serve as hubs of expertise. Various platforms feature articles and posts written by industry experts, enthusiasts, or professionals. This ensures that readers receive reliable and up-to-date information on their chosen topics. heralddiary

    ReplyDelete

Post a Comment

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

What are some good alternatives to Simulink?

Matlabsolutions provide latest  MatLab Homework Help, MatLab Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. SIMULINK is a visual programing environment specially for time transient simulations and ordinary differential equations. Depending on what you need there are plenty of Free, Libre and Open Source Software (FLOSS) available: Modelica language is the most viable alternative and in my opinion it is also a superior option to MathWorks SIMULINK. There are open source implementations  OpenModelica  and  JModelica . One of the main advantages with Modelica that you can code a multidimensional ordinary differential equation with algebraic discrete non-causal equations. With OpenModelica you may create a non-causal model right in the GUI and with

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing