Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

How do I estimate or optimize the parameters of my ODE system in MATLAB 8.1 (R2013a)?

 I have a system of ordinary differential equations (ODE) with some unknown parameters (coefficients). I want to simultaneously solve the system of differential equations as well as optimize for the unknown parameters by minimizing an objective function that depends on the solution of the ODE system.

 
What is the best way to do this in MATLAB?

 NOTE:-


Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

There are two approaches that can be taken:
 
1) The optimization toolbox in MATLAB provides function such as FMINSEARCH, LSQNONLIN, FMINCON etc., which can be used for optimizing parameters while minimizing an objective function. In this case, the objective function will have to call another sub-routine which solves the differential equations using ODE solvers such as ODE23, ODE45, ODE23s, ODE113, or ODE15s. The ODE solver in turn will call the function where the differential equations are implemented.
 
Attached is a simple example that optimizes a single parameter for a 1 state simulation (that is a first order ODE). Note that the ‘optimization toolbox’ is needed to execute the example.
 
The workflow can be described as follows:
 
a) Choose an ODE solver (i.e. ode45 or ode15s), then write the update function for the differential equations.
 
b) Write an objective function that takes in the values of the parameters, solves the ODE for those particular values, and then calculates the cost function (such as the difference between the experimental and simulated data) that needs to be minimized.
 
c) Use an optimization function like LSQNONLIN or FMINCON to minimize the objective function.
 
d) Use this section of the documentation to address potential issues that go along with a numerical optimization routine wrapped around a numerical simulation.

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F