Skip to main content

How to change x-axis ticks labels in stackedplot?

  h = stackedplot(rand(6,3));   I want to set x-axis ticks according to my own defined set i.e., instead of 1:6, I want to replace x-axisticks [1, 2,3 ,4,5,6] to ['A', 'S','T', 'AAA', 'BBB', 'ZZZ'] , by rotating it to 90 degree that is vertically insted of horizontally?     NOTE:- Matlabsolutions.com  provide latest  MatLab Homework Help, MatLab Assignment Help  ,  Finance Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. There does not seem to be an easy way to set the  XTick  or  XTickLabel  of a  StackedLineChart  object (such as what's created by  stackedplot ):   data = rand(6,3); h = stackedplot(1:6,data); % try a couple of things, neither of which work try set(h,'XTick',1:6,'XTic

Create Variant object based on Configuration Reference

 Hi all

 
I have a structure of models and model references, which all use the very same Configuration Reference object as their Configuration Parameters set. By changing the Configuration Reference, I can change the Configuration Parameters for all models at once. This Configuration Reference object and those Configuration Parameter sets are located inside a Data Dictionary, to which all models have access to.
 
I am using Variant Subsystems inside my models, and I want to make those variants based on which selection I make in the Configuration Reference object. (To which Configuration Parameter set I am pointing it to basically.) So I wanted to create a Simulink.Variant object, and as a condition I want to make a check of the Configuration Reference. For example, I want to see if the 'SystemTargetFile' is equal to 'ert.tlc'.
 
The problem I am having is how to write an expression for the Simulink.Variant object to get info from the Configuration Reference object?
 
I have used the following expression succesfully before:
 
strcmp('ert.tlc',get_param('mymodel','SystemTargetFile'))
but it requires to provide the model name as an argument. Since I need to use this Simulink.Variant object for all my models, I cannot provide the model name since it will be different many times.
 
I have tried the following expression:
 
strcmp('ert.tlc',get_param(Configuration_set,'SystemTargetFile'))
but it cannot find the Configuration Reference object called 'Configuration_set', although the Variant object and the Configuration Reference object are inside the same Data Dictionary.

ANSWER


Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

Your variant expression cannot find your configuration object because variant object and the configuration object are in different Dictionary sections.
 
You could trysomething messy like storing a string with the name of your data dictionary in the 'Design Data' section:
 
thisDataDictionary = 'MyDataDictionary.sldd'
Then use an expression like
 
strcmp('grt.tlc', get_param(Simulink.data.dictionary.open(thidDataDictionary).getSection('Configurations').getEntry('Configuration_set').getValue, 'SystemTargetFile'))
  SEE COMPLETE ANSWER CLICK THE LINK

Comments

Popular posts from this blog

What are some good alternatives to Simulink?

Matlabsolutions provide latest  MatLab Homework Help, MatLab Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. SIMULINK is a visual programing environment specially for time transient simulations and ordinary differential equations. Depending on what you need there are plenty of Free, Libre and Open Source Software (FLOSS) available: Modelica language is the most viable alternative and in my opinion it is also a superior option to MathWorks SIMULINK. There are open source implementations  OpenModelica  and  JModelica . One of the main advantages with Modelica that you can code a multidimensional ordinary differential equation with algebraic discrete non-causal equations. With OpenModelica you may create a non-causal model right in the GUI and with
https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing