Skip to main content

How To Plot Transfer Functions In Matlab?

  How can I plot this state space like the graph I attached by using tf() and step() command? Thank you!   I2/E0=1/(s^3+s^2+3*s+1)         NOTE:- Matlabsolutions.com  provide latest  MatLab Homework Help, MatLab Assignment Help  ,  Finance Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. Try these codes below please;   clc; clear; close all; numerator = 1; denominator = [1,1,3,1]; sys = tf(numerator,denominator); yyaxis left SEE COMPLETE ANSWER CLICK THE LINK https://www.matlabsolutions.com/resources/how-to-plot-transfer-functions-in-matlab-.php

GPU training of neural network with parallel computing toolbox unreasonably slow, what am I missing?

 I’m trying to speed up the training of some NARNET neural networks by using the GPU support that you get from the parallel computing toolbox but so far I haven’t been getting it to work. Or rather, it is working but it’s unreasonably slow. According to the documentation training on a GPU instead of the CPU shouldn’t be any harder than adding the statement 'useGPU','yes” to the training command. However, if I simply create some dummy data, for example a sine wave with 900 values, and train a NARNET on it using the CPU like so:

 
 
%CPU training
T = num2cell(sin(1:0.01:10));
net = narnet( 1:2, 10 ); 
[ Xs, Xsi, Asi, Ts] = preparets( net, {}, {}, T );
rng(0)
net.trainFcn = 'trainscg';
tic
net = train(net,Xs,Ts,'showResources','yes' );
toc %2.77

The training takes less than 3 seconds. But when doing the exact same thing on a CUDA supported GTX 760 GPU:

%GPU training
T = num2cell(sin(1:0.01:10));
net = narnet( 1:2, 10 ); 
[ Xs, Xsi, Asi, Ts] = preparets( net, {}, {}, T );
rng(0)
net.trainFcn = 'trainscg';
tic
net = train(net,Xs,Ts,'useGPU','yes','showResources','yes' );
toc % 1247.6
Incredibly the training takes over 20 minutes!
 
I’ve read through Mathworks fairly extensive documentation on parallel and GPU computing with the neural network toolbox  and seen that there are a few things that can/should be done when calculating with a GPU for example converting the input and target data to GPU arrays before training with the nndata2gpu command and replacing any tansig activation functions with elliotsig which does speed up the training a bit:
%Improved GPU training
T = num2cell(sin(1:0.01:10));
net = narnet( 1:2, 10 ); 
[ Xs, Xsi, Asi, Ts ] = preparets( net, {}, {}, T );
rng(0)

net = configure(net,Xs,Ts); 
Xs = nndata2gpu(Xs);
Ts = nndata2gpu(Ts);
Xsi = nndata2gpu(Xsi);

for i=1:net.numLayers
  if strcmp(net.layers{i}.transferFcn,'tansig')
    net.layers{i}.transferFcn = 'elliotsig';
  end
end

net.trainFcn = 'trainscg';
tic
net = train(net,Xs,Ts,'showResources','yes' );
toc  %70.79
The training here only takes about 70 seconds, but still it’s many times slower compared to just doing it on my CPU. I’ve tried several different sized data series and network architectures but I’ve never seen the GPU training being able to compete with the CPU which is strange since as I understand it most professional ANN research is done using GPU’s?
 
What am I doing wrong here? Clearly I must be missing something fundamental.

ANSWER



Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

Getting a speed up with a GPU requires a couple things:
 
1) The amount of time spent in gradient calculations (which happen on CPU or GPU as you request) is significant compared to the training step update (which still happens on the CPU).
 
2) The problem allows enough parallelism to run efficiently on the much slower but much greater number of GPU cores relative to the CPU.
 
For both requirements, the larger the dataset and the larger the neural network, the more parallelism that can be taken advantage of and the greater percentage of calculations are in the gradient so the training steps are not a speed bottleneck.
 
The NAR problem you defined only has 899 steps with a 10 neuron network. The fact that both dataset 

  SEE COMPLETE ANSWER CLICK THE LINK

Comments

Popular posts from this blog

What are some good alternatives to Simulink?

Matlabsolutions provide latest  MatLab Homework Help, MatLab Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. SIMULINK is a visual programing environment specially for time transient simulations and ordinary differential equations. Depending on what you need there are plenty of Free, Libre and Open Source Software (FLOSS) available: Modelica language is the most viable alternative and in my opinion it is also a superior option to MathWorks SIMULINK. There are open source implementations  OpenModelica  and  JModelica . One of the main advantages with Modelica that you can code a multidimensional ordinary differential equation with algebraic discrete non-causal equations. With OpenModelica you may create a non-causal model right in the GUI and with
https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

Stretch the dynamic range of the given 8-bit grayscale image using MATL...