Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

Why is my neural network overfitting?

 Hello! I'm trying to make a forecast program using neural networks. The training function I'm using is the Bayesian Regularization.

Results are pretty good, but when I see the performance, I notice that the training error has decreased but the Test values didn't.
 
In fact, when I test the network with additional new values, the results are pretty awful. I believe that this was because the network became overfitted.
 
My question is,how can I prevent the 'trainbr' function from overfitting? Every time I train the network the error of the values assigned for testing does not decrease.
 
inputs = tonndata(x,false,false);
targets = tonndata(t,false,false);

net = feedforwardnet([15,13],'trainbr');

net.trainParam.lr = 0.05; 
net.trainParam.mc = 0.9; 

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};

net.divideFcn = 'dividerand';  

net.divideMode = 'time'; 
net.divideParam.trainRatio = 85/100;
net.divideParam.valRatio = 0/100;
net.divideParam.testRatio = 15/100;
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'logsig';

net.performFcn = 'mse';

net = train(net,inputs,targets);
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

 

ANSWER



Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

The best approach for regression is to start with FITNET using as many defaults as possible. The default I-H-O node topology contains Nw = (I+1)*H+(H+1)*O unknown weights. Ntrn training examples yields Ntrneq = Ntrn*O training equations with Ntrndof = Ntrneq-Nw training degrees of freedom. The average variance in the training target examples is MSEtrn00 = mean(var(target')). Obtaining a mean-square-error lower than MSEtrngoal = 0.01*Ntrndof*MSEtrn00a/Ntrneq for Ntrndof > 0 results in a normalized DOF adjusted MSE of NMSEtrna <= 0.01 and the corresponding adjusted training Rsquared R2trna = 1-NMSEtrna >= 0.99. That is interpreted as the successful modeling of at least 99% of the variation in the target.
 
The training objective is to try and minimize H with the constraint R2trna >=0.99. This is usually achieved by trial and error over a double for loop with the outer loop of hidden node candidate values h = Hmin:dH:Hmax and an inner loop of i = 1:Ntrials random weight initializations. I have posted many, many examples. Search NEWSGROUP and ANSWERS using
 

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F