Skip to main content

How To Plot Transfer Functions In Matlab?

  How can I plot this state space like the graph I attached by using tf() and step() command? Thank you!   I2/E0=1/(s^3+s^2+3*s+1)         NOTE:- Matlabsolutions.com  provide latest  MatLab Homework Help, MatLab Assignment Help  ,  Finance Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. Try these codes below please;   clc; clear; close all; numerator = 1; denominator = [1,1,3,1]; sys = tf(numerator,denominator); yyaxis left SEE COMPLETE ANSWER CLICK THE LINK https://www.matlabsolutions.com/resources/how-to-plot-transfer-functions-in-matlab-.php

Weights in Neural networks

 I am training a simple BP neural network with 8 inputs, 1 output and 1 hidden layer with 10 nodes in it. my weight matrices is a set of numbers between -1 and 1; but I can not get a physical meaning about these weights. Are weights in accordance with importance of the inputs in the model? shouldn't I get higher weights for inputs which are more correlated with the output? how can get a physical meaning about resulted weights?



ANSWER



Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.


It tends to be difficult, if not impossible, to understand weight configurations when one or more of the following conditions exist
 
 
    a. The number of input variables, I, is large.

    b. Some input variables are correlated.

    c. The number of hidden nodes, H, is large.

    d. The number of output variables, O, is large.
With an I-H-O = 8-10-1 node topology, there are Nw = net.numWeightElements = (I+1)*H+(H+1)*O = 90+11 = 101 unknown weights to be estimated by Ntrneq = prod(size(Ttrn)) = Ntrn*O training equations. With Nw large, nonlinear optimization solutions tend to be nonrobust unless Ntrneq >> Nw.
 
If odd activation functions like tansig are used, each local minimum is associated with 2^H * H! weight configurations related by changing the signs of the weights attached to each hidden node (2^H) and reordering the position of the hidden nodes (H!).
 
The best bet is to (not necessarily in order of effectiveness)
 
1. Reduce the input dimensionality I as much as possible. Each reduction by 1 reduces Nw by H. Simple approaches are
 
    a. Use STEPWISEFIT or SEQUENTIALFS with polynomial models that are 
    linear in the weights.

    b. After training, rank the inputs by the increase in MSE when only the
    matrix row of that input is scrambled (i.e., randomly reordered ). Remove
    the worst input, retrain and repeat untill only useful inputs remain.

    c.Transform to dominant orthogonal inputs using PCA for regression or PLS 
    for classification.
2. Reduce the number of hidden nodes, H, as much as possible. Each reduction by 1 reduces Nw by I+O+1 . My approach is to obtain numH*Ntrials separate designs where numH is the number of candidate values for H and Ntrials is the number of different weight initializations for each candidate.

SEE COMPLETE ANSWER CLICK THE LINK

Comments

Popular posts from this blog

What are some good alternatives to Simulink?

Matlabsolutions provide latest  MatLab Homework Help, MatLab Assignment Help  for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research. SIMULINK is a visual programing environment specially for time transient simulations and ordinary differential equations. Depending on what you need there are plenty of Free, Libre and Open Source Software (FLOSS) available: Modelica language is the most viable alternative and in my opinion it is also a superior option to MathWorks SIMULINK. There are open source implementations  OpenModelica  and  JModelica . One of the main advantages with Modelica that you can code a multidimensional ordinary differential equation with algebraic discrete non-causal equations. With OpenModelica you may create a non-causal model right in the GUI and with
https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

Stretch the dynamic range of the given 8-bit grayscale image using MATL...