Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

I have extracted an image object, now i need to determine the line of symmetry for that object

 I have an object of which there is a symmetrical pattern, i want to plot a line of symmetry and then determine the array co-ordinates of the boundary point of the that line of symmetry. For example consider below:

How could i go about detecting the line of symmetry for the object?

NOTE:-


Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

Try this code,  below this image it creates.

% Read in a gray scale demo image.
folder = pwd;
baseFileName = 'cd.jpg';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
	% The file doesn't exist -- didn't find it there in that folder.  
	% Check the entire search path (other folders) for the file by stripping off the folder.
	fullFileNameOnSearchPath = baseFileName; % No path this time.
	if ~exist(fullFileNameOnSearchPath, 'file')
		% Still didn't find it.  Alert user.
		errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
		uiwait(warndlg(errorMessage));
		return;
	end
end
grayImage = imread(fullFileName);
% Get the dimensions of the image.  
% numberOfColorChannels should be = 1 for a gray scale image, and 3 for an RGB color image.
[rows, columns, numberOfColorChannels] = size(grayImage);
if numberOfColorChannels > 1
	% It's not really gray scale like we expected - it's color.
	% Use weighted sum of ALL channels to create a gray scale image.
	grayImage = rgb2gray(grayImage); 
	% ALTERNATE METHOD: Convert it to gray scale by taking only the green channel,
	% which in a typical snapshot will be the least noisy channel.
	% grayImage = grayImage(:, :, 2); % Take green channel.
end
% Display the image.
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Grayscale Image', 'FontSize', fontSize, 'Interpreter', 'None');

% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
% Get rid of tool bar and pulldown menus that are along top of figure.
set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
set(gcf, 'Name', 'Demo by ImageAnalyst', 'NumberTitle', 'Off') 

% Binarize the image
binaryImage = grayImage > 15;
% Display the image.
subplot(2, 2, 2);
imshow(binaryImage, []);
title('Thresholded Image', 'FontSize', fontSize, 'Interpreter', 'None');

% Extract the largest image and fill its holes.
binaryImage = bwareafilt(binaryImage, 1);
binaryImage = imfill(binaryImage, 'holes');
% Display the image.

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F