Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

Finding inflection points of a noisy signal

 Hi, I'd like to find the inflection points of this noisy signal. Do you have any suggestions on how to do this?

 

fs = 100; %Hz
dt = 1 / fs;
t = 0:dt:2;
x = sin(3 * pi * t) - (3 * cos(11 * pi * t));
x_noise = x + (1.5 * rand(size(x)));

 NOTE:-


Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

Differentiation is a noise amplification process. Why does that matter here? And what do I mean by that claim, anyway?
 
First, the claim. Computing a derivative goes back to a finite difference, thus deltay/deltax, taken as a limit as deltax goes to zero. If your data is noisy, then the noise in y is divided by a tiny number, thus amplifying the noise.
 
Another way to look at it if you prefer, you can view estimation of the derivative from data as trying to solve a first kind integral equation, something known to be ill-posed. ill-posed means here that the solution amplifies any noise in the data heavily.
 
Worse, higher order derivatives are larger amplifiers of noise in the data. So computing the second derivative (in the presence of noise) is a more difficult problem than computing the first derivative.
 
Why is any of this relevant to the question at hand? Because an inflection point is a point where the second derivative changes sign! So, you want to infer where that second derivative changes sign, therefore you need to estimate that second derivative function in the presence of significant noise.
 
Don't expect magic to happen here. It won't. That noise will cause all sorts of nasty stuff to happen to you.
 
 
x = linspace(0,2*pi,100);
y = sin(x) + randn(size(x))/5;
plot(x,y,'o')
grid on
Yes. We all know the inflection point happens at x == pi. But this noise is pretty nasty. Any kind of local smoothing you do will be overwhelmed by that noise. Even visually, I can conclude the inflection point is somewhere between 2.5 and 3.5, but I'm not sure I would have much more confidence than that.

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F