Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

Speech Command detection in audio file

I need to remake "Speech Command Recognition Using Deep Learning" example so I can read audio from the wav file and get time intervals in which the command appears, but I don't know how to change real-time analysis from microphone into static file analysis in this example. 

Thank you for your help.

 %% Detect Commands Using Streaming Audio from Microphone
% Test your newly trained command detection network on streaming audio from
% your microphone. If you have not trained a network, then type
% |load('commandNet.mat')| at the command line to load a pretrained network
% and the parameters required to classify live, streaming audio. Try
% saying one of the commands, for example, _yes_, _no_, or _stop_.
% Then, try saying one of the unknown words such as _Marvin_, _Sheila_, _bed_,
% _house_, _cat_, _bird_, or any number from zero to nine.


%%
% Specify the audio sampling rate and classification rate in Hz and create
% an audio device reader that can read audio from your microphone.
fs = 16e3;
classificationRate = 20;
audioIn = audioDeviceReader('SampleRate',fs, ...
    'SamplesPerFrame',floor(fs/classificationRate));

%%
% Specify parameters for the streaming spectrogram computations and
% initialize a buffer for the audio. Extract the classification labels of
% the network. Initialize buffers of half a second for the labels and
% classification probabilities of the streaming audio. Use these buffers to
% compare the classification results over a longer period of time and by
% that build 'agreement' over when a command is detected.
frameLength = frameDuration*fs;
hopLength = hopDuration*fs;
waveBuffer = zeros([fs,1]);

labels = trainedNet.Layers(end).Classes;
YBuffer(1:classificationRate/2) = categorical("background");
probBuffer = zeros([numel(labels),classificationRate/2]);

framesNumber = audio/frameLength;

%%
% Create a figure and detect commands as long as the created figure exists.
% To stop the live detection, simply close the figure. 
h = figure('Units','normalized','Position',[0.2 0.1 0.6 0.8]);

while ishandle(h)
    
    % Extract audio samples from the audio device and add the samples to
    % the buffer.
    x = audioIn();
    waveBuffer(1:end-numel(x)) = waveBuffer(numel(x)+1:end);
    waveBuffer(end-numel(x)+1:end) = x;
    
    % Compute the spectrogram of the latest audio samples.
    spec = auditorySpectrogram(waveBuffer,fs, ...
        'WindowLength',frameLength, ...
        'OverlapLength',frameLength-hopLength, ...
        'NumBands',numBands, ...
        'Range',[50,7000], ...
        'WindowType','Hann', ...
        'WarpType','Bark', ...
        'SumExponent',2);
    spec = log10(spec + epsil);
    
    % Classify the current spectrogram, save the label to the label buffer,
    % and save the predicted probabilities to the probability buffer.
    [YPredicted,probs] = classify(trainedNet,spec,'ExecutionEnvironment','cpu');
    YBuffer(1:end-1)= YBuffer(2:end);
    YBuffer(end) = YPredicted;
    probBuffer(:,1:end-1) = probBuffer(:,2:end);
    probBuffer(:,end) = probs';
    
    % Plot the current waveform and spectrogram.
    subplot(2,1,1);
    plot(waveBuffer)
    axis tight
    ylim([-0.2,0.2])
    
    subplot(2,1,2)
    pcolor(spec)
    caxis([specMin+2 specMax])
    shading flat
    
    % Now do the actual command detection by performing a very simple
    % thresholding operation. Declare a detection and display it in the
    % figure title if all of the following hold:
    % 1) The most common label is not |background|.
    % 2) At least |countThreshold| of the latest frame labels agree.
    % 3) The maximum predicted probability of the predicted label is at
    % least |probThreshold|. Otherwise, do not declare a detection.
    [YMode,count] = mode(YBuffer);
    countThreshold = ceil(classificationRate*0.2);
    maxProb = max(probBuffer(labels == YMode,:));
    probThreshold = 0.5;
    subplot(2,1,1); 

    if YMode == "background" || count 


NOTE:-

Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.

Here is a sketch of how you can achieve this:
1) Read the contents of the audio file
 
 
[audioIn,fs] = audioread('filename.wav');

2) Split the  signal into 1-second chunks, with overlap between consecutive chunks. The higher the overlap, the higher your resolution (i.e. how close you will be able to detect where the keyword occured)

 

y = buffer(audioIn, fs, round(3*fs/4));
3) Convert each chunk (each column of y) to a mel spectrogram, and classify it using the network. Based on the network results, you will get an estimate of where the word occured in your wav file (each chunk advances by 1 sec - overlap, so in the this example, it's ~250 ms.

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F