Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

How I can add more hidden layers on the nftool code that I exported from the nnstart GUI?

 


Since I don't know much about how to implement a network using command line, I tried using the GUI from NNSTART and exported the code so I could try to figure out how to make the changes I need. the problems is that I don't how to add more layers/neurons, even more ephocs.
 
Here is the code I got from my first attempt:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created 13-Sep-2017 20:47:36
%
% This script assumes these variables are defined:
%
%   Input_train - input data.
%   Target_train - target data.

x = Input_train;
t = Target_train;

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 23;
net = fitnet(hiddenLayerSize,trainFcn);

% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};

% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand';  % Divide data randomly
net.divideMode = 'sample';  % Divide up every sample
net.divideParam.trainRatio = 80/100;
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 10/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse';  % Mean Squared Error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
  'plotregression', 'plotfit'};

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
end

 


ANSWER



Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.


you can use :
 
 
trainFcn = 'trainlm';
 hiddenLayerSize = 23;
 numberhiddenlayers=2;%more hidden layers 
net = fitnet([hiddenLayerSize numberhiddenlayers],trainFcn);
 net.trainParam.epochs=2000;% more epochs
 view(net)

with your code:

% Solve an Input-Output Fitting problem with a Neural Network
      % Script generated by Neural Fitting app
      % Created 13-Sep-2017 20:47:36
      %
      % This script assumes these variables are defined:
      %
      %   Input_train - input data.
      %   Target_train - target data.
      x = Input_train;
      t = Target_train;
      % Choose a Training Function
      % For a list of all training functions type: help nntrain
      % 'trainlm' is usually fastest.
      % 'trainbr' takes longer but may be better for challenging problems.
      % 'trainscg' uses less memory. Suitable in low memory situations.
      trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation.
      % Create a Fitting Network
      hiddenLayerSize = 23;
      numberhiddenlayers=2; %more hidden layers

SEE COMPLETE ANSWER CLICK THE LINK

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F