How I can add more hidden layers on the nftool code that I exported from the nnstart GUI?

 


Since I don't know much about how to implement a network using command line, I tried using the GUI from NNSTART and exported the code so I could try to figure out how to make the changes I need. the problems is that I don't how to add more layers/neurons, even more ephocs.
 
Here is the code I got from my first attempt:
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created 13-Sep-2017 20:47:36
%
% This script assumes these variables are defined:
%
%   Input_train - input data.
%   Target_train - target data.

x = Input_train;
t = Target_train;

% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 23;
net = fitnet(hiddenLayerSize,trainFcn);

% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};

% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand';  % Divide data randomly
net.divideMode = 'sample';  % Divide up every sample
net.divideParam.trainRatio = 80/100;
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 10/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse';  % Mean Squared Error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
  'plotregression', 'plotfit'};

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};
valTargets = t .* tr.valMask{1};
testTargets = t .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
end

 


ANSWER



Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.


you can use :
 
 
trainFcn = 'trainlm';
 hiddenLayerSize = 23;
 numberhiddenlayers=2;%more hidden layers 
net = fitnet([hiddenLayerSize numberhiddenlayers],trainFcn);
 net.trainParam.epochs=2000;% more epochs
 view(net)

with your code:

% Solve an Input-Output Fitting problem with a Neural Network
      % Script generated by Neural Fitting app
      % Created 13-Sep-2017 20:47:36
      %
      % This script assumes these variables are defined:
      %
      %   Input_train - input data.
      %   Target_train - target data.
      x = Input_train;
      t = Target_train;
      % Choose a Training Function
      % For a list of all training functions type: help nntrain
      % 'trainlm' is usually fastest.
      % 'trainbr' takes longer but may be better for challenging problems.
      % 'trainscg' uses less memory. Suitable in low memory situations.
      trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation.
      % Create a Fitting Network
      hiddenLayerSize = 23;
      numberhiddenlayers=2; %more hidden layers

SEE COMPLETE ANSWER CLICK THE LINK

Comments

Popular posts from this blog

Why are Fourier series important? Are there any real life applications of Fourier series?

What are some good alternatives to Simulink?

What is the difference between a reversible machine and a self-locking machine?