Skip to main content

Stretch the dynamic range of the given 8-bit grayscale image using MATL...

FFT and PSD - normalize values

 I have noticed many posts regarding frequency spectrum and many answers to the same questions. How to normalize the values of FFT and PSD from a periodic signal?

 
Most of us when we refeer to "normalize the frequency domain" we mean that it is required to obtain the frequency domain of the signals where the amplitude of the signal, or the time window, do not affect the obtained plot.
 
For example in my case I use a periodic sine signal with a frequency of 160HZ, and observed that the amplitude of the foundamental frequency in both figures changes according to the length of the signal. So the questions are:
How to obtain a FFT and PSD where the amplitude values are not affected by:
  1. The time window or the number of points.
  2. The peak amplitude of the signal. I mean for example if the signal amplitude is reduced by the half, still getting the corresponding peak value, or even better the corresponding percentage.
Notice that even the amplitud of the signal is 15. The obtained values in FFT and PSD are not 15.
 
For FFT the value varies between 10 and 14 depending on the time window, but never the 15 that it should be, even it the time window is very high.
 
For PSD the amplitude value increases as a function of the time window. From 2 up to 800.
 
Also notice that PSD shows the foundamental frequency at 160 Hz but in the one-side FFT varies 145 - 160 Hz. How to solve it? Why is this happening?
 
 
Do you have any comments about how to fix my code in order to get the same amplitude for PSD and FFT despite of the time window. Thanks
 
%% R is the signal data points extracted from the timetable Datos03
%% tiempo is the signal time points.
%% L is the number of data points (Length of the signal)
    
%Time domain
plot(Datos3.Time,Datos3.VarName1)
R=Datos3.VarName1;
tiempo=seconds(Datos3.Time);

% FFT
Fs=10240;           % Sampling frequency                    
T=1/Fs;             % Sampling period       
a=size(tiempo)      % Number of points
L = a(1,1)          % Length of signal

Y = fft(R);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = Fs*(0:(L/2))/L;

plot(f,P1)
xlim([0 400])
title('FFT')

%PSD
[SignalSpectrum,SignalFrequencies] = periodogram(R, ...
    [],[],Fs);
plot(SignalFrequencies,SignalSpectrum)
xlim([0 400])
title('PSD')




ANSWER



Matlabsolutions.com provide latest MatLab Homework Help,MatLab Assignment Help for students, engineers and researchers in Multiple Branches like ECE, EEE, CSE, Mechanical, Civil with 100% output.Matlab Code for B.E, B.Tech,M.E,M.Tech, Ph.D. Scholars with 100% privacy guaranteed. Get MATLAB projects with source code for your learning and research.


This concerns fft only; psd is a different animal.
 
For a continuous oscillation, most people do not seem to be concerned about fft output that spills into adjacent frequencies, but it's worth looking at as you are doing. With the fft you can get sharp one-point frequency peaks with a varying number of points and a varying amplitude, but not for time windows of arbitrary width. With fft It's required that there be an exact integral number of oscillations in the time window. And, using a single oscillation of a sine wave as an example, the last point in the array can't repeat the first point. The last point has to be "one point short" of a full oscillation
So
 
y = sin(2*pi*(0:9)/10)    % correct   but   y = sin(2*pi*(0:10)/10)      % incorrect 

The code below gives two peaks, one at +160 kHz and one at -160 kHz for any number of fft points (above a minimum number), any number of complete oscillations in the time window and any amplitude. The abs(amplitude) of each peak is A/2, consistent with cos(w*t) = (1/2)(exp(i*w*t)+exp(-i*w*t)). If you want, as is common for  plotting purposes, you could ignore the negative freqencies and double the height of the positive frequency peak.

SEE COMPLETE ANSWER CLICK THE LINK

Comments

Popular posts from this blog

https://journals.worldnomads.com/scholarships/story/70330/Worldwide/Dat-shares-his-photos-from-Bhutan https://www.blogger.com/comment.g?blogID=441349916452722960&postID=9118208214656837886&page=2&token=1554200958385 https://todaysinspiration.blogspot.com/2016/08/lp-have-look-at-this-this-is-from.html?showComment=1554201056566#c578424769512920148 https://behaviorpsych.blogspot.com/p/goal-bank.html?showComment=1554201200695 https://billlumaye.blogspot.com/2012/10/tagg-romney-drops-by-bill-show.html?showComment=1550657710334#c7928008051819098612 http://blog.phdays.com/2014/07/review-of-waf-bypass-tasks.html?showComment=1554201301305#c6351671948289526101 http://www.readyshelby.org/blog/gifts-of-preparedness/#comment_form http://www.hanabilkova.svet-stranek.cz/nakup/ http://www.23hq.com/shailendrasingh/photo/21681053 http://blogs.stlawu.edu/jbpcultureandmedia/2013/11/18/blog-entry-10-guns-as-free-speech/comment-page-1443/#comment-198345 https://journals.worldnomads.com

USING MACHINE LEARNING CLASSIFICATION ALGORITHMS FOR DETECTING SPAM AND NON-SPAM EMAILS

    ABSTRACT We know the increasing volume of unwanted volume of emails as spam. As per statistical analysis 40% of all messages are spam which about 15.4 billion email for every day and that cost web clients about $355 million every year. Spammers to use a few dubious techniques to defeat the filtering strategies like utilizing irregular sender addresses or potentially add irregular characters to the start or the finish of the message subject line. A particular calculation is at that point used to take in the order rules from these email messages. Machine learning has been contemplated and there are loads of calculations can be used in email filtering. To classify these mails as spam and non-spam mails implementation of machine learning algorithm  such as KNN, SVM, Bayesian classification  and ANN  to develop better filtering tool.   Contents ABSTRACT 2 1. INTRODUCTION 4 1.1 Objective : 5 2. Literature Review 5 2.1. Existing Machine learning technique. 6 2.2 Existing

Why are Fourier series important? Are there any real life applications of Fourier series?

A  Fourier series  is a way of representing a periodic function as a (possibly infinite) sum of sine and cosine functions. It is analogous to a Taylor series, which represents functions as possibly infinite sums of monomial terms. A sawtooth wave represented by a successively larger sum of trigonometric terms. For functions that are not periodic, the Fourier series is replaced by the Fourier transform. For functions of two variables that are periodic in both variables, the trigonometric basis in the Fourier series is replaced by the spherical harmonics. The Fourier series, as well as its generalizations, are essential throughout the physical sciences since the trigonometric functions are eigenfunctions of the Laplacian, which appears in many physical equations. Real-life applications: Signal Processing . It may be the best application of Fourier analysis. Approximation Theory . We use Fourier series to write a function as a trigonometric polynomial. Control Theory . The F